大地百科

网站首页 首页 > 科技生活 > 正文

理想变压器的三个理想条件 理想变压器的三个理想条件是什么

2024-02-29 09:54 科技生活 来源:

变压器有没有理想变压器?

有。

理想变压器的三个理想条件 理想变压器的三个理想条件是什么理想变压器的三个理想条件 理想变压器的三个理想条件是什么


变压器等效阻抗计算公式为:R=PkxUn^2/(1000xSn^2)。

等效电阻由多个电阻经过等效串并联公式,计算出等效电阻的大小值。将这一等效电阻代替原有的几个电阻后,对于整个电路的电压和电流量不会产生任何的影响。

如果副线圈接的是纯电阻负载Rx,原、副线圈匝数比值(变比n1/n2)为 n:1,那么该负载在变压器初级表现出来的电阻值为Rx的n的平方倍。

理想变压器有两个基本性质:

1、理想变压器既不消耗能量,也不储存能量,在任一时刻进入理想变压器的功率等于零,即从初级进入理想变压器的功率,全部传输到次级的负载中,它本身既不消耗,也不储存能量。

2、当理想变压器次级端接一个电阻R时,初级的输入电阻为变压器的电压和线圈匝数是正比关系:n1/n2=u1/u2, 则u2=(u1n2)/n1 。n2R。

U1:U2=N1:N2(理想变压器电压之比与线圈匝数成正比)

I1:I2=N2W重=-ΔEp:N1(理想变压器电流之比与线圈匝数成反比)

以上内容参考:

物理:关于理想变压器(欢迎专家赐教)

第五十三条 电力管理部门3、调节档位时,应根据输出电压高低,调节分接开关到相应位置,调节分接开关的基本原则是:应当按照有关电力设施保护的规定,对电力设施保护区设立标志。

理想变压器的耦合因数为1,即输入理想变压器的瞬时功率为0,所以它既不耗能也不储能,它将能量全部从原边传输到副边,在传输过程中,仅仅将电压、电流按变比作数值变换。因此理想变压器中相位不滞后。

只有在空心变压器,耦合因数不为1时,变压器的原副边存在耦合,才会出现相位。

对于理想变压器的问题

4,热力学温度:T = t + 273 单位:开(K)

既然理想变压器是定义出来的、是不存在的,你就不能用现实的原理去理解它。理想变压器只传递能量、变换初次级的电压,自身没有损耗,那么,阻抗只能是趋于无穷大,否则就有损耗了。

周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s

到大学还有电压源、电流源的概念,也是理想的:电压源内阻为零,可以输出趋于无穷大的电流;电流源内阻为无穷大,可以输出趋于无穷大的电压。还有理想二极管、三极管等等。

引入理想元件的目的是突出主要矛盾,简化电路分析,在工程上是很有用的。

如家里的220V电源,供电公司是用变压器把一万伏高压降低后输送给我们的,这个220V电源不是理想的,有损耗,就是有内阻,但是对用户而言,在一定的功率内,完全可以认为是理想电压源,以便简化计算。你打开一盏60瓦的电灯,就没有必要去考虑220V降低了多少。

理想变压器原理

5.(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s

(A)通有正弦交变电流的原线圈产生的磁通量不变的说法是错的.理由如下;

共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零.

1、磁通量是随正弦交变电流的变化而变化.

2、交流电随时间的变化,时大时小,时到正值,时过零,时到负的值,周而复始按正弦波变化着.

3、因而磁通量也是按正弦波(电流)的变化,而周而复始变化着.

5、很明显(D)也是错的.

高中物理理想变压器的多选题

(3) 合力大小可以大于分力,也可以小于分力,也可以等于分力.

我同意你的观点。ABC均错,此题只有一个正确选项D。

B选项,图2中t=0时刻电压为0,即磁通变化率为0,即磁通量。

C选项,实际功率根本不到220W,原方电流14,匀速圆周运动公式连1A都不到,谈何2A。

理想变压器的原理

由于无漏磁通,故穿过两个线圈的总磁通相同,均为Φ=Φ21+Φ12=Φ11+Φ22。又由于图中u1(t),i1(t)和Φ三者的参考方向互为关联,u2(t),i2(t)和Φ三者的参考方向也互为关联,故:u1(t)=N1dΦ/dt u2(t)=N2dΦ/dt故有u1(t)/u2(t)=N1/N2=1/n(7-6-1a)或 u1(t)=u2(t)/n(7-6-1b)又因为理想变压器不消耗也不贮存能量,所以它吸收的瞬时功率必为零,即必有 u1(t)i1(t)+u2(t)i1(t)=0故得 i1(t)/i2(t)=-u2(t)/u1(t)=-N2/N1=-n (7-6-2a)或 i1(t)=-ni2(t) (7-6-2b)式(7-6-1),(7-6-2)即为理想变压器的时域伏安方程。可看出:1.由于n为大于零的实数,故此两方程均为代数方程。即理想变压器为一静态元件(无记忆元件),已经没有了电磁感应的痕迹,所以能变化直流电压和直流电流。2.理想变压器的两线圈的电压与其匝数成正比,两线圈的电流与其匝数成反比,且当n;1时有u2(t);u1(t),为升压变压器;当n<;1时有u2(t)<;u1(t),为降压变压器;当n=1是有u2(t)=u1(t),既不升压也不降压。3.在电路理论中,我们把能联系两种电路变量的元件称为相关元件,否则即为非相关性元件。电阻,电感,电容等均为相关性元件,而理想变压器则为非相关性元件,亦即u1(t)与i1(t)之间,u2(t)与i2(t)之间,均无直接的约束关系,它们均各自由外电路决定。当电路工作在正弦稳态时,式(7-6-1),(7-6-2)即可写为向量形式,即式(7-6-1)和(7-6-2)均是在图示电压参考极性与电流参考方向7.合位移S=(Sx^2+ Sy^2)1/2 ,以及高中物理公式,规律汇编表同名端标志下列出的。若线圈的同名端或电压的参考极性,电流的参考方向改变了,则其伏安方程中等号右端的+,-号也应相应改变。例如对于图7-6-2(a).(b)所示电路,则其伏安方程为;图7-6-2理想变压器电路(a)同名端改变 (b)i2(t)参考方向和u2(t)参考极性改变需要指出,从耦合电感的极限来定义理想变压器只是一种方法,是为了使读者易于接受。理想变压器的本质定义应是从数学上来定义,即凡满足式(7-6-1),(7-6-2)伏安方程的电路元件即为理想变压器,其电路符号采用图7-6-1(b),(c)表示,也只是因袭了传统而已,并非一定要由线圈构成。

高一物理必修二化学必修二笔记

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s^2 末速度(Vt):m/s

时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )

3.有用推论Vt^2 –Vo^2=-2gS 4.上升高度Hm=Vo^2/2g (抛出点算起)

5.往返时间t=2Vo/实际功率: 指机器在实际工作中的输出功率g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动 万有引力

1)平抛运动

1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt

3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo

位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2R=m(2π/T)^2R

5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

角速度(ω):rad/s 向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

6.地球同步卫星GMm/(R+h)^2=m4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和最小发射速度均为7.9Km/S。

1.功

(1)做功的两个条件: 作用在物体上的力.

物体在里的方向上通过的距离.

(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)

1J=1Nm

当 0<= a <派/2 w>0 F做正功 F是动力

当 a=派/2 w=0 (cos派/2=0) F不作功

当 派/2<= a <派 W<0 F做负功 F是阻力

(3)总功的求法:

W总=W1+W2+W3……Wn

W总=F合Scosa

2.功率

(1) 定义:功跟完成这些功所用时间的比值.

P=W/t 功率是标量 功率单位:瓦特(w)

此公式求的是平均功率

1w=1J/s 1000w=1kw

(2) 功率的另一个表达式: P=Fvcosa

当F与v方向相同时, P=Fv. (此时cos0度=1)

此公式即可求平均功率,也可求瞬时功率

1)平均功率: 当v为平均速度时

2)瞬时功率: 当v为t时刻的瞬时速度

(3) 额定功率: 指机器正常工作时输出功率

正常工作时: 实际功率≤额定功率

(4) 机车运动问题(前提:阻力f恒定)

P=Fv F=ma+f (由牛顿第二定律得)

汽车启动有两种模式

1) 汽车以恒定功率启动 (a在减小,一直到0)

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有值

2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)

a恒定 F不变(F=ma+f) V在增加 P实逐渐增加

此时的P为额定功率 即P一定

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有值

3.功和能

(1) 功和能的关系: 做功的过程就是能量转化的过程

功是能量转化的量度

(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量

功是物体状态变化过程有关的物理量,即状态量

这是功和能的根本区别.

4.动能.动能定理

(1) 动能定义:物体由于运动而具有的能量. 用Ek表示

表达式 Ek=1/2mv^2 能是标量 也是过程量

单位:焦耳(J) 1kgm^2/s^2 = 1J

(2) 动能定理内容:合外力做的功等于物体动能的变化

表达式 W合=ΔEk=1/2mv^2-1/2mv0^2

适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能

(1) 定义:物体由于被举高而具有的能量. 用Ep表示

表达式 Ep=mgh 是标量 单位:焦耳(J)

(2) 重力做功和重力势能的关系

重力势能的变化由重力做功来量度

(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关

重力势能是相对性的,和参考平面有关,一般以地面为参考平面

重力势能的变化是的,和参考平面无关

(4) 弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关

弹性势能的变化由弹力做功来量度

6.机械能守恒定律

(1) 机械能:动能,重力势能,弹性势能的总称

总机械能:E=Ek+Ep 是标量 也具有相对性

机械能的变化,等于非重力做功 (比如阻力做的功)

ΔE=W非重

机械能之间可以相互转化

(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能

发生相互转化,但机械能保持不变

表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功

回答者: 煮酒弹剑爱老庄 - 高级 六级 1-28 20:51

一,力学

胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关)

重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力)

3 ,求F,的合力:利用平行四边形定则.

注意:(1) 力的合成和分解都均遵从平行四边行法则.

(2) 两个力的合力范围: F1-F2 F F1 + F2

4,两个平衡条件:

F合=0 或 : Fx合=0 Fy合=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点.

(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)

力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)

5,摩擦力的公式:

(1) 滑动摩擦力: f= FN

说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关.

(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.

大小范围: O f静 fm (fm为静摩擦力,与正压力有关)

说明:

a ,摩擦力可以与运动方向相同,也可以与运动方向相反.

b,摩擦力可以做正功,也可以做负功,还可以不做功.

c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反.

d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用.

6, 浮力: F= gV (注意单位)

7, 万有引力: F=G

适用条件:两质点间的引力(或可以看作质点,如两个均匀球体).

G为万有引力恒量,由卡文迪许用扭秤装置首先测量出.

在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)

a ,万有引力=向心力

Gb,在地球表面附近,重力=万有引力

mg = G g = G

宇宙速度

mg = m V=

8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)

电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)

10,磁场力:

洛仑兹力:磁场对运动电荷的作用力.

公式:f=qVB (BV) 方向--左手定则

安培力 : 磁场对电流的作用力.

公式:F= BIL (BI) 方向--左手定则

11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay

适用范围:宏观,低速物体

理解:(1)矢量性 (2)瞬时性 (3)性

(4) 同体性 (5)同系性 (6)同单位制

12,匀变速直线运动:

基本规律: Vt = V0 + a t S = vo t +a t2

(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)

(2) A B段中间时刻的瞬时速度:

Vt/ 2 == (3) AB段位移中点的即时速度:

Vs/2 =

匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……(

初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)

竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.

上升高度: H =

(2) 上升的时间: t=

(3) 上升,下落经过同一位置时的加速度相同,而速度等值反向

(4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t =

(5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t

Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解)

线速度: V= R =2f R=

角速度:=

向心加速度:a =2 f2 R

向心力: F= ma = m2 R= mm4n2 R

注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心.

(2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供.

氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供.

15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动

水平分运动: 水平位移: x= vo t 水平分速度:vx = vo

竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t

tg = Vy = Votg Vo =Vyctg

V = Vo = Vcos Vy = Vsin

在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量.

16, 动量和冲量: 动量: P = mV 冲量:I = F t

(要注意矢量性)

17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化.

公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键)

18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体)

公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O

适用条件:

(1)系统不受外力作用. (2)系统受外力作用,但合外力为零.

(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.

(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.

19, 功 : W = Fs cos (适用于恒力的功的计算)

理解正功,零功,负功

重力的功------量度------重力势能的变化

电场力的功-----量度------电势能的变化

分子力的功-----量度------分子势能的变化

合外力的功------量度-------动能的变化

20, 动能和势能: 动能: Ek =

重力势能:Ep = mgh (与零势能面的选择有关)

21,动能定理:外力所做的总功等于物体动能的变化(增量).

公式: W合= Ek = Ek2 - Ek1 = 22,机械能守恒定律:机械能 = 动能+重力势能+弹性势能

条件:系统只有内部的重力或弹力做功.

公式: mgh1 + 或者 Ep减 = Ek增

23,能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功.

E = Q = f S相

P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)

25, 简谐振动: 回复力: F = -KX 加速度:a = -

单摆周期公式: T= 2 (与摆球质量,振幅无关)

(了解)弹簧振子周期公式:T= 2 (与振子质量,弹簧劲度系数有关,与振幅无关)

26, 波长,波速,频率的关系: V == f (适用于一切波)

二,热学

1,热力学定律:U = Q + W

符号法则:外界对物体做功,W为"+".物体对外做功,W为"-";

物体从外界吸热,Q为"+";物体对外界放热,Q为"-".

物体内能增量U是取"+";物体内能减少,U取"-".

2 ,热力学第二定律:

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化.

表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化.

表述三:第二类永动机是不可能制成的.

3,理想气体状态方程:

(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化.

(2) 公式: 恒量

(零度是低温的极限,不可能达到)

三,电磁学

(一)直流电路

1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)

2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)

3,电阻串联,并联:

串联:R=R1+R2+R3 +……+Rn

并联: 两个电阻并联: R=

4,欧姆定律:(1)部分电路欧姆定律: U=IR

(2)闭合电路欧姆定律:I =

路端电压: U = -I r= IR

电源输出功率: = Iε-Ir =

电源热功率:

电源效率: = =

(3)电功和电功率:

电功:W=IUt 电热:Q= 电功率 :P=IU

对于纯电阻电路: W=IUt= P=IU =

对于非纯电阻电路: W=Iut P=IU

(4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时:

电动势:ε=n 内阻:r=n

(二)电场

1,电场的力的性质:

电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)

点电荷电场的场强: E = (注意场强的矢量性)

2,电场的能的性质:

电势: U = (或 W = U q )

UAB = φA - φB

电场力做功与电势能变化的关系:U = - W

3,匀强电场中场强跟电势的关系: E = (d 为沿场强方向的距离)

4,带电粒子在电场中的运动:

? Uq =mv2

②偏转:运动分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t

a =

(三)磁场

几种典型的磁场:通电直导线,通电螺线管,环形电流,地磁场的磁场分布.

磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)

磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)

带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动.即: qvB =

可得: r = , T = (确定圆心和半径是关键)

(四)电磁感应

1,感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律.

2,感应电动势的大小:① E = BLV (要求L垂直于B,V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)

(五)交变电流

1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势值:Em = nBSω .

2 ,正弦式交流的有效值:E = ;U = ; I =

(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)

3 ,电感和电容对交流的影响:

电感:通直流,阻交流;通低频,阻高频

电容:通交流,隔直流;通高频,阻低频

电阻:交,直流都能通过,且都有阻碍

4,变压器原理(理想变压器):

①电压: ② 功率:P1 = P2

③ 电流:如果只有一个副线圈 : ;

若有多个副线圈:n1I1= n2I2 + n3I3

电磁振荡(LC回路)的周期:T = 2π

四,光学

1,光的折射定律:n =

介质的折射率:n =

3,双缝干涉的规律:

①路程ΔS = (n=0,1,2,3--) 明条纹

(2n+1) (n=0,1,2,3--) 暗条纹

相邻的两条明条纹(或暗条纹)间的距离:ΔX =

4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )

(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的初动能,W为金属的逸出功,与金属的种类有关)

5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)

五,原子和原子核

氢原子的能级结构.

原子在两个能级间跃迁时发射(或吸收光子):

hυ = E m - E n

核能:核反应过程中放出的能量.

质能方程: E = m C2 核反应释放核能:ΔE = Δm C2

变压器三相三柱、三相四柱、三相五柱的区别?

24,功率: P = (在t时间内力对物体做功的平均功率)

三者区别:

1、环绕铁芯柱数量不同:

三柱有三根,四柱有四根,五柱有五根。

2、零序阻抗不一样:

三柱阻抗,四柱次之,五柱零序阻抗最小。

1、三相三柱式,也就是三相绕组别个绕制在一个铁芯柱上,三根柱上下用铁鄂连接起来。三相三柱式变压器中,没有给零序磁场留出通道,所以零序磁通只能通过空气隙到外壳后回来,形成零序磁通回路,因此这种变压器的零序阻抗都比较大。

2、三相四柱变压器,就是除了上述三相绕组有三根铁芯柱以外,两侧还有一根空余没有绕组的铁芯柱,四根铁芯柱的上下都用铁鄂连接起来。

3、三相五柱变压器,就是除了上述三相绕组有三根铁芯柱以外,两侧还有一根空余没有绕组的铁芯柱,四根铁芯柱的上下都用铁鄂连接起来。这样,零序磁通就通过外面两根铁芯柱与上下铁鄂形成了流通回路。这样的变压器零序阻抗很小。

扩展参考资料来源:资料:

变压器的的三相三柱、三相四柱、三相五柱的区别

首先要明白变压器的工作原理:

变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。它可以变换交流电压、电流和阻抗。最简单的铁心变压器由一个软磁材料做成的铁心及套在铁心上的两个匝数不等的线圈构成。

铁心的作用是加强两个线圈间的磁耦合。为了减少铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联系,线圈由绝缘铜线(或铝线)绕成。一个线圈接交流电源称为初级线圈(或原线圈),另一个线圈接用电器称为次级线圈(或副线圈)。

实际的变压器是很复杂的,不可避免地存在铜损(线圈电阻发热)、铁损(铁心发热)和漏磁(经空气闭合的磁感应线)等,为了简化讨论这里只介绍理想变压器。

理想变压器成立的条件是:忽略漏磁通,忽略原、副线圈的电阻,忽略铁心的损耗,忽略空载电流(副线圈开路原线圈线圈中的电流)。例如电力变压器在满载运行时(副线圈输出额定功率)即接近理想变压器情况。

一般变压器都是三相三柱式,也就是三相绕组别个绕制在一个铁芯柱上,三根柱上下用铁鄂连接起来。三相三柱式变压器中,没有给零序磁场留出通道,所以零序磁通只能通过空气隙到外壳后回来,形成零序磁通回路,因此这种变压器的零序阻抗都比较大。所谓三相五柱变压器,就是除了上述三相绕组有三根铁芯柱以外,两侧还有两根空余没有绕组的铁芯柱,五根铁芯柱的上下都用铁鄂连接起来。这样,零序磁通就通过外面两根铁芯柱与上下铁鄂形成了流通回路。这样的变压器零序阻抗很小。一般来讲,用于实验室和有特殊要求的地方比较多。当然,如果电网都采用这种变压器,可以减少很多零序损耗。但是费用却要增加更多。

除了名字,和长的样子有区别之外,最主要的区别是他们用在不同的供电系统中

关于高中理想变压器。

4、从宏观来讲,或从工程角度来讲.当然,变压器原线圈中的电流已经定了,铁心中的磁通量在理想变压器中也就定了(A)就是对了.但从微观来解释(A)是错的.不知你老师是如何解释的?

i2变小,i1也随着变小是对的。i2决定i1。n2变小,U2变小,R2不变,所以i2变小

希望对你有帮6.一般小型电力变压器带的大多是无载分接开关,需要调节时必须停电后,打开变压器本体上的分接开关罩盖,旋转调节手柄到所需的档位,然后测量变压器三相绕组的直流电阻,阻值基本平衡(一般不大于2%),然后盖上罩盖,送电。助

这是因为理想变压器的原电流I1是由副线圈电流I2决定。而副线圈电压U2是由原电压U1决定的。线圈比例变了,先考虑电压变化,再由欧姆定理考虑副线圈电流。用副线圈电流计算原线圈电流还有问题可追问。

如图所示,理想变压器有三个线圈A、B、C,其中B、C的匝数分别为n 2 、n 3 电压表的示数为U,电流表的示数

A、两个副线圈,因而它们的磁通量的变化率相同,所以 U B n 2 = U A n A ,由于A线圈的电压不知,所以其匝数不知,但可确定副几个重要推论:线圈C的电压,故A错误,B正确;

C、根据线圈C的电流,可求出两副线圈的消耗功率,由P 出 =P 入 从而可求出变压器的输入n2变小,U2变小,R2不变功率,故C正确,

D、由I 2 = U 2 R 和I 3 = U 3 R 可知,D正确.

故选BCD


免责声明: 本文由用户上传,如有侵权请联系删除!


标签:

最新文章
热评文章
随机文章